МБОУ «Юхмачинская средняя общеобразовательная школа» Алькеевского муниципального района Республики Татарстан

«Рассмотрено» руководитель МО Солд /Самигуллина Э.Р./ протокол № 1 от «26» августа 2022 г.

«Согласовано» заместитель руководителя по ВР «26» августа 2022г.

«Утверждаю»

Директор школы

Приказ № 124 от

«27» августа 2022г.

ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ "Юный програмист"

Программу составила: учитель информатики Ахметшина Алсиня Булатовна

Пояснительная записка

Рабочая программа внеурочной деятельности «Нескучное программирование» составлена в соответствии с требованиями Федерального государственного образовательного стандарта общего образования (ФГОС ООО), учебного плана внеурочной деятельности Программа разработана на основе рекомендаций сети детских технопарков «Кванториум», занятия будут проводиться на базе центра образования цифрового и гуманитарного профилей «Точка Роста» МБОУ «Юхмачинская СОШ.

Программа «Юный программист» предназначена для организации внеурочной деятельности по нескольким взаимосвязанным направлениям развития личности, таким как общеинтеллектуальное и общекультурное. Программа предполагает ее реализацию в 7-8 классе основной школы.

Программа курса способствует развитию творческих способностей, логического мышления, углубления знаний в области алгоритмизации и программирования, расширению общего кругозора учащихся. Курс позволяет успешно готовиться к участию в олимпиадах, конкурсах и к итоговой аттестации по информатике.

Курс поддержан программным обеспечением КуМир (Комплект Учебных МИРов). КуМир - система программирования, предназначенная для поддержки начальных курсов информатики и программирования в основной школе.

КуМир — это свободно распространяемая кроссплатформенная русскоязычная система программирования, предназначенная для начального обучения основам алгоритмизации. Изучая программирование в среде КуМир с исполнителями Робот, Чертежник, Черепаха, Кузнечик, учащиеся прочнее усваивают основы алгоритмизации, приобщаются к алгоритмической культуре, познают азы профессии программиста.

Основная цель программы — формирование у учащихся навыков операционного и логического стиля мышления, представления о приемах и методах программирования через составление алгоритмов и программ.

В соответствии с поставленной целью можно выделить следующие задачи:

образовательные:

- способствовать формированию учебно-интеллектуальных умений, приёмов мыслительной деятельности, освоению рациональных способов её осуществления на основе учета индивидуальных особенностей учащихся;
- способствовать формированию активного, самостоятельного, креативного мышления;
- научить основным приемам и методам программирования.

развивающие:

- развивать психические познавательные процессы: мышление, восприятие, память, воображение у учащихся;
- развивать представление учащихся о практическом значении информатики.

воспитательные:

- воспитывать культуру алгоритмического мышления;
- воспитывать у учащихся усидчивость, терпение, трудолюбие.

Общая характеристика учебного курса

Актуальность данной образовательной программы состоит в том, современные профессии становятся все более интеллектоёмкими, требующими развитого логического мышления. Опоздание с развитием мышления — это опоздание навсегда. Поэтому для подготовки детей к жизни в современном информационном обществе в первую очередь необходимо развивать логическое мышление, способности к анализу и синтезу. Алгоритмическое мышление является необходимой частью научного взгляда на мир. В то же время оно включает и некоторые общие мыслительные навыки, способствует формированию научного мировоззрения, стиля жизни современного человека.

Новизна программы основана на раннем изучении азов алгоритмизации и программирования. Программа предполагает раннее знакомство учащихся с основными понятиями, используемыми в языках программирования высокого уровня. Большинство заданий встречаются в разных темах для того, чтобы показать возможности решения одной и той же задачи или проблемы различными средствами, обеспечивающими достижение требуемого результата, что в итоге приведет к способности выбирать оптимальное решение данной задачи или проблемы.

Место курса в учебном плане

Учебный курс «Юный программист» в 7-8 классе реализуется за счет вариативного компонента, формируемого участниками образовательного процесса. Программа рассчитана на 70 часов в год, 2 часа в неделю (одно занятие в неделю по 45 мин). Форма реализации — кружок.

Формы организации учебного процесса: индивидуальная (самостоятельное усвоение знаний, формирование умений и навыков, развитие самооценки учеников, познавательной самостоятельности), групповая (взаимопомощь, распределение обязанностей, развитие чувства ответственности за результат совместной деятельности, стимул творческого соревнования), парная.

Формы контроля

Предметом контроля и оценки являются составленные алгоритмы и программы учащимися к предложенным задачам в среде «Кумир». Качество ученической программы оценивается следующими критериями:

- Последовательность действий при разработке программ: постановка задачи, выбор метода решения, составление алгоритма, составление программы, запись программы в компьютер, отладка программы, тестирование программы.
- «Правила хорошего тона» при разработке программ: читаемость и корректность программ, защита от неправильного ввода, понятия хорошего и плохого «стиля программирования».

Оценке подлежит в первую очередь уровень достижения учеников минимально необходимых результатов, обозначенных в целях и задачах курса.

Контроль за усвоением качества знаний должен проводиться на трех уровнях:

- **1-й уровень** воспроизводящий (репродуктивный) предполагает воспроизведение знаний и способов деятельности. Учащийся воспроизводит учебную информацию, выполняет задания по образцу.
- **2-й уровень** конструктивный предполагает преобразование имеющихся знаний. Ученик может переносить знания в измененную ситуацию, в которой он видит элементы, аналогичные усвоенным;
- **3-й уровень** творческий предполагает овладение приемами и способами действия. Ученик осуществляет перенос знаний в незнакомую ситуацию, создает новые нестандартные алгоритмы познавательной деятельности.

Качество знаний и умений ученика оценивается следующими характеристиками:

- знание основных алгоритмических конструкций;
- умение составить и записать алгоритм с использованием соответствующей алгоритмической конструкции;
- умение найти более эффективный способ решения задачи;
- умение тестировать программу.

Текущий контроль знаний осуществляется по результатам выполнения учащимися практических заданий.

Выполненные учащимися работы включаются в их «портфель достижений».

Итоговый контроль реализуется в форме защиты собственных программ-проектовучащихся или группы учащихся

Личностные, метапредметные и предметные результатыосвоения учебного курса

В результате изучения курса получат дальнейшее развитие личностные, регулятивные, коммуникативные и познавательные универсальные учебные действия, учебная (общая и предметная) и общепользовательская ИКТ-компетентность обучающихся.

В основном формируются и получат развитие метапредметные результаты, такие как:

- умение самостоятельно планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умения соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата;
- умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения;
- формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетентности).

Вместе с тем вносится существенный вклад в *развитие личностных результатов*, таких как:

- формирование ответственного отношения к учению;
- формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, творческой и других видов деятельности.
- формирование способности обучающихся к саморазвитию и личностному самоопределению, мотивации к целенаправленной познавательной деятельности с целью приобретения профессиональных навыков в ИТ-сфере;
- способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

В части развития *предметных результатов* наибольшее влияние изучение курса оказывает:

- умение использовать термины понятий «алгоритм», «данные», «программа» через призму практического опыта в ходе создания программных кодов; понимание различий между употреблением этих терминов в обыденной речи и в информатике;
- умение создавать и выполнять программы для решения несложных алгоритмических задач в среде КУМИР;
- практические навыки создания линейных алгоритмов управления исполнителями;
- умение формально выполнять алгоритмы, описанные с использованием конструкций ветвления (условные операторы) и повторения (циклы), вспомогательных алгоритмов;
- умение создавать и выполнять программы для решения несложных алгоритмических задач в выбранной среде программирования.

Регулятивные универсальные учебные действия

Обучающийся научится:

- целеполаганию, включая постановку новых целей, преобразование практической задачи в познавательную;
- самостоятельно анализировать условия достижения цели на основе учета выделенных учителем ориентиров действия в новом учебном материале;
- планировать пути достижения целей; уметь самостоятельно контролировать свое время и управлять им.

Коммуникативные универсальные учебные действия

Обучающийся научится:

• устанавливать и сравнивать разные точки зрения, прежде чем принимать решения и делать выбор;

- аргументировать свою точку зрения, спорить и отстаивать свою позицию не враждебным для оппонентов образом;
- задавать вопросы, необходимые для организации собственной деятельности и сотрудничества с партнером;
- осуществлять взаимный контроль и оказывать в сотрудничестве необходимую взаимопомощь.

Познавательные универсальные учебные действия

Обучающийся научится:

- создавать и преобразовывать модели и схемы для решения задачи;
- осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий.

Характеристика деятельности ученика

Аналитическая деятельность:

- приводить примеры формальных и неформальных исполнителей;
- придумывать задачи по управлению учебными исполнителями;
- выделять примеры ситуаций, которые могут быть описаны с помощью линейных алгоритмов, алгоритмов с ветвлениями и циклами.

Практическая деятельность:

- составлять линейные алгоритмы и программы по управлению учебным исполнителем;
- составлять циклические алгоритмы по управлению учебными исполнителями;
- составлять алгоритмы с ветвлением по управлению учебным исполнителем;
- составлять вспомогательные алгоритмы для управления учебными исполнителями.

Содержание программы

Раздел 1. Алгоритмы и исполнители

Понятие исполнителя. Неформальные и формальные исполнители. Исполнители алгоритмов. Система команд исполнителя. Понятие алгоритма Способы записи алгоритмов. Основные алгоритмические конструкции. Понятие оптимизации алгоритмов. Программа, ошибки. Выбор необходимой алгоритмической конструкции для решения поставленной задачи.

Раздел 2. Компьютерные исполнители алгоритмов в среде Кумир

Знакомство со средой Кумир. Учебные исполнители: Кузнечик, Водолей, Черепаха, Чертежник, Робот как примеры формальных исполнителей. Их назначение, среда, режим работы, система команд. Управление исполнителями с помощью команд и их последовательностей. Составление линейных, с ветвлениями и циклами алгоритмов и программ для управления исполнителями Кузнечик, Водолей, Черепаха, Чертежник, Робот в среде Кумир.

Раздел 3. Свободное проектирование. Итоговое повторение

Итоговое повторение. Интеллектуальный марафон «Нескучное программирование».

Компьютерный практикум.

Практические работы на каждом уроке по соответствующей теме.

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№ п/ п	Д ат а	Кол- во часов	Тема	Примечание
			Алгоритмы и исполнители (8 часа)	
1		2	Вводный урок. Инструктаж по технике безопасности. Исполнители вокруг нас.	
2		2	Понятие исполнителя. Неформальные и формальные исполнители. Система команд исполнителей (СКИ).	
3		2	Исполнители алгоритмов. Понятие алгоритма Способы записи алгоритмов (нумерованный список, таблица, блок-схема).	Примеры алгоритмов с ветвлениями и повторениями (в повседневной жизни и т.д.)
4		2	Основные алгоритмические конструкции. Понятие оптимизации алгоритмов. Программа, ошибки, типы ошибок.	
	Упра	 вление к	сомпьютерными исполнителями алгоритмов в сро	еде Кумир (56 часов)
5		2	Знакомство со средой Кумир. Учебные исполнители (Кузнечик, Водолей, Черепаха, Чертежник, Робот) как примеры формальных исполнителей.	
6		2	Исполнитель Кузнечик. Среда обитания, СКИ. Решение задач и разработка программ для Кузнечика. Составление линейных алгоритмов для исполнителя Кузнечик	
7		2	Понятие цикла. Составление циклических алгоритмов для исполнителя Кузнечик	
8		2	Решение задач в формате ОГЭ с исполнителем Кузнечик.	
9		2	Исполнитель Водолей. Среда обитания, СКИ. Решение задач и разработка программ для исполнителя Водолей. Составление линейных алгоритмов для исполнителя Водолей	
10		2	Решение задач и разработка программ для исполнителя Водолей.	
11		2	Исполнитель Черепаха . Среда обитания, СКИ. Работа с пультом управления. Связь пульта управления со средой. Составление линейных алгоритмов для исполнителя Черепаха.	
12		2	Цикл со счетчиком. Решение задач для исполнителя Черепаха.	
13		2	Вложенные циклы. Решение задач для исполнителя Черепаха.	
14		2	Построение геометрических фигур с помощью исполнителя Черепаха.	
15		2	Построение орнаментов с помощью исполнителя Черепаха.	
16		2	Решение задач в формате ОГЭ с исполнителем Черепаха. Самостоятельная работа учащихся по индивидуальным карточкам.	

17	2	Исполнитель Чертёжник . Среда обитания, СКИ. Разработка линейных алгоритмов для исполнителя Чертёжник	Различать команды переместиться в точку исместиться на вектор
18	2	Основные и вспомогательные алгоритмы. Использование вспомогательных алгоритмов для составления линейных программ управления исполнителем Чертёжник.	Команда установитьцвет (допускается 9 цветов) Команда надпись (вещ ширина символа, литтекст)
19	2	Основные базовые алгоритмические конструкции (цикл со счетчиком) и их реализация в среде исполнителя Чертежник.	Команда повтораЦикл N раз
20	2	Основные базовые алгоритмические конструкции (цикл с условием) и их реализация в среде исполнителя Чертежник .	Использовать повторение фрагментов при создании орнамента
21	2	Использование и работа структуры «вложенные циклы» в среде исполнителя Чертёжник	
22	2	Вложенные фигуры.	Алгоритм построения вложенных фигур (увеличивающихся)
23	2	Использование и работа структуры «вложенные циклы с условием» в среде исполнителя Чертёжник	
24	2	Сложные алгоритмические конструкции (вложенные циклы и ветвления) и их реализация в среде исполнителя Чертежник	
25	2	Решение задач в формате ОГЭ с исполнителем Чертёжник	
26	2	Исполнитель Робот . Среда обитания, СКИ. Управление движением исполнителя с помощью пульта.	
27	2	Составление линейных алгоритмов для исполнителя Робот.	
28	2	Основные базовые алгоритмические конструкции (ветвление) и их реализация в среде исполнителя Робот .	
29	2	Основные базовые алгоритмические конструкции (цикл со счетчиком) и их реализация в среде исполнителя Робот	цикл «n paз»
30	2	Использование и работа структуры «вложенные циклы» в среде исполнителя Робот	Вспомогательные алгоритмы внутри цикла «n раз»
31	2	Основные базовые алгоритмические конструкции (цикл с условием) и их реализация в среде исполнителя Робот	
32	2	Сложные алгоритмические конструкции (вложенные циклы и ветвления) и их реализация в среде исполнителей Робот	Решение задач в формате ОГЭ с исполнителем Робот

		Свободное проектирование. Итоговое повторение
		(6ч)
33	2	Интеллектуальный марафон «Нескучное программирование».
34 35	2 2	Итоговое занятие. Конкурс «Битва Титанов»

Требования к подготовке учащихся

Учащиеся должны:

• иметь представление о системах программирования, средах и языках программирования.

знать:

- что такое формальные языки как способ представления алгоритмов;
- что такое программирование и этапы решения задачи на ПК;
- понятие программы и её структуры;
- понятие входных параметров;
- понятие команды в программе и правила записи команд в программе;
- назначение среды «Кумир».

уметь:

- приводить примеры представления алгоритмов на формальном языке;
- представлять алгоритмы на формальном языке (в блок-схеме, графически, с помощью пиктограмм);
- разрабатывать план решения задач;
- запускать программу «Кумир»;
- выбирать нужного исполнителя;
- запускать программу на исполнение;
- выполнять отладку программы;
- находить ошибки в тексте программе;
- рисовать простейшие фигуры, реализуя линейные и циклические алгоритмы.
- владеть основными понятиями:
 - ✓ алгоритм;
 - ✓ свойства алгоритма;
 - ✓ исполнитель, СКИ, среда исполнителя;
 - ✓ переменная имя, тип, значение;
 - ✓ алгоритмические конструкции следование, ветвление, цикл;
 - ✓ блок-схема; алгоритмический язык.

Учебно-методическое обеспечение

Литература для педагога:

- 1. Анеликова Л.А., Гусева О.Б. Программирование на алгоритмическом языке КУМИР. Москва, СОЛОН-ПРЕСС, 2013.
- 2. Босова Л.Л., Сорокина Т.Е. Методика применения интерактивных сред для обучения младших школьников программированию: Информатика и образование №7(256) сентябрь 2014 г.
- 3. Костюк Ю.Л. Информатика для начинающих программистов. Томск, Издательство Томского университета, 1997.
- 4. Информатика. Методическое пособие для 7-9 классов. Босова Л.Л., Босова А.Ю. М.: БИНОМ. Лаборатория знаний, 2015
- 5. Окулов, С.М. Программирование в алгоритмах/ С.М. Окулов. М.:БИНОМ, Лаборатория знаний, 2013.
- 6. Программы внеурочной деятельности для основной школы. 7-9 классы. Цветкова М.С., Богомолова О.Б. . М.: БИНОМ. Лаборатория знаний, 2013.
- 7. Поляков К.Е. Алгоритмы и исполнители. Учебник по алгоритмизации. (Доступ: https://docs.google.com/file/d/0BxInd4PRGJMmNEViWDVtbVp6Rlk/edit?pli=1)
- 8. Прищепа Т.А. Преподавание программирования в среде КуМир. Методическое пособие (Доступ: http://ido.tsu.ru/other_res/school2/osn/metod/prog/index.html)
 - 9. Удалова Т.Л., Ануфриева М.Н. Информатика. КуМир. Саратов: Лицей, 2012.

Литература для учащихся:

- 1. Анеликова Л.А., Гусева О.Б. Программирование на алгоритмическом языке КУМИР. Москва, СОЛОН-ПРЕСС, 2013.
- 2. Поляков К.Е. Алгоритмы и исполнители. Учебник по алгоритмизации. (Доступ: https://docs.google.com/file/d/0BxInd4PRGJMmNEViWDVtbVp6Rlk/edit?pli=1)
- 3. Прищепа Т.А. Преподавание программирования в среде КуМир. Методическое пособие (Доступ: http://ido.tsu.ru/other_res/school2/osn/metod/prog/index.html)
 - 4. Удалова Т.Л., Ануфриева М.Н. Информатика. КуМир. Саратов: Лицей, 2012.

Интернет ресурсы

- ¶ http://kpolyakov.spb.ru/download/kumkurs.pdf Практикумы в КуМир. К.Ю. Поляков.

- □ http://www.klyaksa.net/htm/konspektsch/kumir/index.htm сайт Клякс@.net: Информатика в школе. Компьютер на уроках
- <u>http://ftl1.ru/udalova-tl.html</u> − Электронные образовательные ресурсы, разработанные учителем информатики и ИКТ Удаловой Т.Л.
- ☐ https://books.google.ru/books?id=CdAqevFDPa4C&printsec=frontcover&hl=ru#v=onepage&q&f=false Удалова Т.Л., Ануфриева М.Н. Информатика. КуМир (в электронном доступе).